BERT Fine-Tune Your Data | Python Integration with Enterprise Resource Planning

Xamta Infotech | hi@xamta.in
Get ODOO ?  Click here to get Price | Price start from 50 $ / unlimited users, amazing wow ! 

Using BERT for downstream tasks typically involves fine-tuning the pre-trained BERT model on a specific dataset related to your task. Below is a simplified example of how you can use the Transformers library to fine-tune BERT for text classification. This example assumes you have a dataset for sentiment analysis.


```python

import torch

from https://torch.utils.data/ import DataLoader, Dataset

from transformers import BertTokenizer, BertForSequenceClassification, AdamW


# Step 1: Load Pre-trained BERT Model and Tokenizer

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

model = BertForSequenceClassification.from_pretrained('bert-base-uncased')


# Step 2: Prepare your Dataset

class SentimentDataset(Dataset):

def __init__(self, texts, labels):

self.texts = texts

self.labels = labels


def __len__(self):

      return len(self.texts)


def __getitem__(self, idx):

      return {'text': self.texts[idx], 'label': self.labels[idx]}


# Example data

train_texts = ["This is a positive sentence.", "Negative sentiment here."]

train_labels = [1, 0] # 1 for positive, 0 for negative


train_dataset = SentimentDataset(train_texts, train_labels)

train_dataloader = DataLoader(train_dataset, batch_size=2, shuffle=True)


# Step 3: Fine-tune BERT on your Task

optimizer = AdamW(model.parameters(), lr=5e-5)


# Fine-tuning loop

for epoch in range(3): # Replace 3 with the desired number of epochs

for batch in train_dataloader:

inputs = tokenizer(batch['text'], return_tensors='pt', padding=True, truncation=True)

labels = torch.tensor(batch['label']).unsqueeze(0)


outputs = model(**inputs, labels=labels)

loss = outputs.loss


loss.backward()

optimizer.step()

optimizer.zero_grad()


# Step 4: Save the Fine-tuned Model

model.save_pretrained('fine_tuned_bert_sentiment')


# Step 5: Inference with the Fine-tuned Model

text_to_classify = "This is a test sentence."

inputs = tokenizer(text_to_classify, return_tensors='pt', padding=True, truncation=True)

outputs = model(**inputs)


# Get predicted class (0 or 1 for binary classification)

predicted_class = torch.argmax(outputs.logits).item()


print(f"Predicted class for '{text_to_classify}': {predicted_class}")

```


Note:

1. Ensure you replace the dataset and labels with your actual data.

2. Fine-tuning might require adjusting hyperparameters, such as learning rate, batch size, and the number of epochs.

3. This example is simplified and may need modifications based on your specific task and dataset.

4. Always refer to the Transformers library documentation for the most up-to-date information: https://huggingface.co/transformers/

Gujarat, India

based Development Company

We deliver web and mobile app development services to Indian businesses since 2013, with 100% project delivery success. Hire the best programmers at affordable prices. Our design-focused approach and project execution processes help you to deliver the right solutions.

Schedule Meeting !

Towards Quality Service

Our approach to strategy is fundamentally inquisitive. We listen and learn. And once we have the full picture, we use our experience to build a brilliant Product.

ERP

OpenERP

ERPNext

ODOO

V-Tiger CRM

SugarCRM

Android

iOS

React.Js / Native

Flutter

Hybrid Mobile Apps

Framework-7

Python

Django

Flask

ODOO-OWL

Machine-Learning

Artificial Intelligence

PHP

laravel

Hybrid-ORM-PHP

PHP Phalcon

Wordpress

Woo-Commerce

Node.js

Electron.js

Express.js

Total.js

Derby.js

Koa.js


Top 10 AI Fraud Detection Solution providers: Safeguarding Your Digital Transactions